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Abstract
A numerical procedure is proposed for calculating the current density j

and electric field E from measurements of the electric transport inside a
sample with rectangular cross section by solving the non-linear electric field
diffusion equation based upon the collective creep model. It is shown
that the sample geometry greatly affects E and j and thus the V –I curve.
To verify our numerical prediction, the V –I curve and critical current of
Tl2Ba2CaCu2O8+x films with a rectangular cross section in various magnetic
fields and temperatures were measured. Comparison shows that the numerical
results agree well with the experimental data.

1. Introduction

Electron transport measurement plays a key role in the characterization of type II super-
conductivity of classical superconductors [1]. Resistance-broadening experiments on high-
temperature superconductors have greatly enriched our knowledge of the properties of the
mixed state [2–8]. Measurement of the V –I characteristic curve is also important for
understanding vortex physics and vortex matter [9–11]. In attempts to understand the V –I
characteristics, one of the assumptions widely adopted up to now is that the current is
homogeneous in superconductors. On this assumption, a measured V –I curve can be changed
directly to the E–j one, on the basis of which a variety of vortex properties have been studied
and understood. Nevertheless, there are difficulties in explaining some of the experiments in
terms of homogeneous current distribution. For example, it is found that the V –I curve of
Ag-sheathed Bi-2223 tapes depends on the sweep rate of the applied current (dI/dt) [12]. It
has also been reported that the resistance of YBa2Cu3O7−δ films decays with time, i.e. the
resistance relaxes [13]. It has been pointed out that these experiments can be understood if one
assumes that current in the sample is spatially inhomogeneous [14,15]. The underlying physics
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is giant flux creep in a sample caused by small flux pinning barriers coupled with high operating
temperatures. In a V –I curve experiment, an applied current always penetrates the measured
sample from its surfaces and then diffuses into its inner part with a certain diffusion speed (v).
The larger the rate dI/dt , the higher the current density and the electric field near the sample
surfaces. It is possible that dI/dt is so large compared with v that a detectable electric field at
the outer part of the sample has already been induced due to the current diffusion, while there is
almost no current in the inner part. That is to say, the current density j is inhomogeneous during
the application of the current. Moreover, the inhomogeneity of j may lead to an electric field
comparable to the experimental criterion of the critical current Ic when the applied current I in
the sample is far smaller than Ic. There is a similar situation for a sample in an applied magnetic
field, i.e. the magnetic shielding current density is dependent on the sweep rate of the applied
field. In magnetic relaxation experiments, the initial magnetization differs with different sweep
rates of the applied field [16, 17]. In such experiments, the irreversible magnetization �M

at a given field H is dependent on the sweep rate dH/dt . The higher dH/dt , the larger
�M [18,19]. In ac susceptibility experiments, the higher the ac field frequency, the higher the
peak of the imaginary part of the ac susceptibility [20, 21].

It has been shown that the geometry of a sample affects the distributions of the flux
density B and the electric field E when magnetic relaxation is conducted without [22] and
with flux creep [23]. It is expected that the sample geometry should influence the transport
current diffusion when a current is applied [24]. Unfortunately, simulations such as those
in references [14, 15] are carried out only for the simplest sample shape, a one-dimensional
sample, while samples in real experiments may be more complicated. It is not clear what the
influence of geometry would be on E and j and thus V –I measurements [24].

In this paper we report a numerical calculation of the V –I curves of a sample with
rectangular cross section based upon the collective flux creep model. It is found that the
sample geometry affects the V –I curve since it affects the inhomogeneous distribution of E
and j . To solve the two-dimensional non-linear diffusion equation and observe numerically the
space and time evolution ofE and j , and the correspondingV –I curve, a procedure is proposed.
The characteristic V –I curves of a Tl2Ba2CaCu2O8+x (Tl2212) sample with rectangular cross
section at different temperatures and fields have been measured and compared to the calculated
V –I ones.

2. Experimental procedure

A 200 nm thick rectangular Tl2212 (Tl2Ba2CaCu2O8+x) film (8 × 12 mm2) was deposited on
a (001) SrTiO3 single-crystal substrate by dc magnetron sputtering and four hours of post-
annealing at 750 ◦C from a pair of Tl2212 superconductor targets which were prepared by
solid-state reaction of stoichiometric amounts of Ca, BaO, CuO and Tl2O3 powders. Then,
the rectangular film was photolithographically etched as a bridge of length l = 0.1 mm and
cross section S = 30 µm ×0.2 µm, as shown schematically in figure 1(a). Examination of the
four metal atoms shows the composition to be 2.1Tl:2.0Ba:1.0Ca:1.9Cu. Details of the growth
process of the film can be found in reference [25]. Four-terminal contact points of silver were
used to measure the V –I and R–T curves. The onset transition temperature Tc was 103.2 K,
with a 10%–90% width less than 1 K according to the R–T curve.

TheV –I characteristic curves of the film as displayed in figure 2 were measured at different
parallel fields and temperatures. The angle between the magnetic field and the film was less
than 0.2◦, so the influence of the orientation of the field could be neglected. It is obvious that
the critical current Ic0 is a function of temperature T and applied field H. In our calculation,
we define Ic0 at a certain reference voltage V0 = 10 µV.
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Figure 1. Samples with rectangular cross section. The applied current is in the y-direction;
d = thickness, w = width. (a) d � w, for our Tl2212 film. (b) d = w.

It has been mentioned above that in the V –I curve measurement, j and E may be non-
homogeneous when the current has not penetrated the sample, so the spatially inhomogeneous
j and E will give rise to (dI/dt)-dependent V –I curves [12–15]. By plotting the log–log V –I
curves it is also shown that most of these curves consist of two parts. In the part with large
current, where the current has penetrated throughout the sample, the V –I characteristic can
be well fitted in terms of a power-law relationship:

V = V0

(
I

Ic0

)n

(1)

whence the parameter n is easily obtained. Moreover, one can safely assume that in this part,
j and E are uniform inside the sample (see figure 5, later). Consequently, equation (1) is
equivalent to

E = E0

(
j

jc0

)n

(2a)

where E0 = V0/l = 0.1 V m−1, jc0 = Ic0/S.
Generally speaking, the E(j) relation cannot be obtained just from the V –I characteristic,

for the former describes a local property while the latter reflects an average one. However,
equation (2a) indicates that the E(j) relation can be described by the collective creep
model of vortex glass with the glass exponent µ = 0. The physical meanings of jc0

and E0 can be seen if one assumes that the effective barrier of flux creep is logarithmic,
U(T ,H, j) = U0(T ,H) ln(jc0/j), and the induced electric field of thermally activated flux
hopping is just equation (2a) according to E = νB = ν0e−U/(kT )B, with n = U0(T ,H)/(kT )

and E0 = ν0B, where v and v0 are flux speeds with and without barriers.
In addition, there are other reasons leading the simulation of the power-law behaviour.

Experimentally, the measurement of local magnetic relaxation in high-temperature super-
conductors with a Hall probe array shows that the dependence of the local activation energy
U on time has the same form [26, 27]. Theoretically, from a very general point of view the
dynamical behaviour of the critical state in a type II superconductor provides an example of
self-organized criticality. The dynamical behaviour then tends to eliminate all the fluctuations
in the system such that the relaxation rate and hence U(j) become constant throughout the
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Figure 2. V –I characteristics of Tl2212 film at different applied fields H and temperatures T .
The symbols represent the experimental data and the lines numerical results.

sample [11]. It is thus very natural to assume that the relationship between U and j mentioned
above will still be correct on a local scale—as well as the power-law relationship described in
equation (2a). Hence, we can write equation (2a) in another form:

E(x, z, t) = E0

[
j (x, z, t)

jc0

]n

(2b)

where, in general, E0, n and jc0 are functions of temperature and magnetic field, respectively.
In the next section, equation (2b) will act as a material equation for conducting calculations.
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3. Numerical calculation

3.1. Basic equations

Let us consider the bridge as a strip of infinite length along the y-axis, thickness d along
the x-axis and width w along the z-axis (see figure 1) When the current is applied along the
y-axis, the electric field and current density have only y-components E(x, z, t) and j (x, z, t),

respectively, while the rotating flux density �B has x- and z-components. According to the
Maxwell equations ∂ �B/∂t = −�∇ × �E and �∇ × �B = µ0 �j , the diffusion equation for E is
given by

µ0
∂j (x, z, t)

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
E(x, z, t). (3a)

The V –I experiment has shown that the electric field induced by the current-density change
rate is described by equation (2b). It is pointed out that equation (2b) can describe not only the
non-linear flux creep such as in Tl2212 film with 1 < n < ∞, but also the ohmic behaviour,
for which n = 1, and the Bean critical state, n → ∞. Substituting equation (2b) into (3a)
yields the electric field diffusion equation

∂E

∂t
= nE

1/n
0

µ0jc0
E1−1/n

(
∂2

∂x2
+

∂2

∂z2

)
E. (3b)

One can also obtain the diffusion equations for j or B in the same way [11, 16–19, 22–24].
However, we found that it is more correct to determine the boundary conditions for solving
equation (3b) numerically (see the next section). In particular, when d � w, the two-
dimensional equation is reduced to an infinite slab whose diffusion equation for E is one
dimensional:

∂E

∂t
= nE

1/n
0

µ0jc0
E1−1/n ∂

2E

∂x2
.

3.2. The boundary and initial conditions

3.2.1. The V –I curve at zero applied field. In a V –I curve measurement, the current is
always applied with a certain sweep rate dI/dt . The boundary condition of equation (3b) can
be obtained from the current conservation equation:

∂

∂t

∫ w

0

∫ d

0
j dx dz = dI

dt
.

Substituting equation (3a) into the conservation equation we obtain

µ0
∂

∂t

∫ w

0

∫ d

0
j dx dz =

∫ w

0
dz

∫ d

0

∂2E

∂x2
dx +

∫ d

0
dx

∫ w

0

∂2E

∂z2
dz = µ0

dI

dt
.

By symmetry, we have

∂E

∂x

∣∣∣∣
x=0

= −∂E

∂x

∣∣∣∣
x=d

∂E

∂z

∣∣∣∣
z=0

= −∂E

∂z

∣∣∣∣
z=w

.

Thus, the first boundary condition is simply given by∫ w

0

∂E

∂x

∣∣∣∣
x=0

dz +
∫ d

0

∂E

∂z

∣∣∣∣
z=0

dx = −µ0

2

dI

dt
. (4a)
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Furthermore, in the centre of the sample B|x=d/2 = B|z=w/2 ≡ 0, so the second boundary
condition is

∂E

∂x

∣∣∣∣
x=d/2

= −∂Bz

∂t

∣∣∣∣
x=d/2

= 0
∂E

∂z

∣∣∣∣
z=w/2

= ∂Bx

∂t

∣∣∣∣
z=w/2

= 0. (5a)

As for the initial condition, there is no electric field in the sample at t = 0; that is,

E(x, z, t)
∣∣
t=0 = 0. (6)

3.2.2. The magnetization curve with zero applied current. It is easy to see that for magnetic
measurement of, for example, the hysteresis loop or relaxation, there is no applied current:

∂

∂t

∫ w

0

∫ d

0
j dx dz = 0.

Substituting equation (3) into the current conservation equation, we obtain

µ0
∂

∂t

∫ w

0

∫ d

0
j dx dz =

∫ w

0
dz

∫ d

0

∂2E

∂x2
dx +

∫ d

0
dx

∫ w

0

∂2E

∂z2
dz = 0.

For anti-symmetry, we have

∂E

∂x

∣∣∣∣
x=0

= ∂E

∂x

∣∣∣∣
x=d

∂E

∂z

∣∣∣∣
z=0

= ∂E

∂z

∣∣∣∣
z=w

.

Thus, the first boundary condition in the magnetic measurement is
∫ w

0

∂E

∂x

∣∣∣∣
x=0

dz +
∫ d

0

∂E

∂z

∣∣∣∣
z=0

dx = 0. (4b)

Furthermore, in the centre of the sample, E = Bv|x=d/2 = Bv|z=w/2 ≡ 0, so the second
boundary condition is

E
∣∣
x=d/2,z=w/2 = 0. (5b)

The initial condition is still equation (6).

3.2.3. The V –I curve under an applied field. It is easy to see that for a non-linear E(j)

relationship such as the power-law form described by equation (2) with n > 1, the above
boundary conditions will no longer be valid because there exist simultaneously applied and
shielding currents in the sample, which will destroy the symmetric or anti-symmetric boundary
conditions. Nevertheless, for n = 1, the linear case, the superposition principle is valid and
one can deal with the applied current and magnetic field separately. Hence, the above boundary
conditions are still correct. In our case, experiment shows that the value of n is not very large.
Furthermore, what we are interested in is not the effect of the magnetic field but that of the
geometric factor on the V –I curves. For these reasons we can still use the above boundary
condition (4a).

3.3. Numerical method and results for a rectangular sample

3.3.1. Numerical method. To simplify the calculation, we first simplify the boundary
condition (4a) and introduce a parameter q describing the aspect ratio of a sample which
is defined as

q =
[∫ w

0

∂E

∂x

∣∣∣∣
x=0

dz

]/[
−µ0

2

dI

dt

]
. (7a)
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According to equation (4a) we have immediately

1 − q =
[∫ d

0

∂E

∂z

∣∣∣∣
z=0

dx

]/[
−µ0

2

dI

dt

]
. (7b)

Now it is apparent for two special cases that

q = 1/2 d/w = 1 for a square cross section

q = 1 d/w = 0 for an infinite slab.

For a sample with rectangular cross section, we can assume that 0 < d � w, i.e. 1/2 � q < 1,
without loss of generality, which means that the parameter q is connected with the aspect
ratio of the rectangular sample. By combining equations (3), (4a), (5a), (6) and (7a), our
simulation yields the electric field E(x, z, t, q) as a function of q at any time before the sweep
is stopped and at any position in the sample. According to equation (2), the corresponding
current density j (x, z, t, q) can then also be obtained. That is to say, we can calculate j and E

at any time when a current is applied to a rectangular sample. Finally, the measurable voltage
V and current I are obtained by integrating E and j , respectively.

3.3.2. Numerical results. First, we calculate the V –I characteristics of samples with the
same area of cross section but different q, from

V = 1

wd

∫ l

0
dy

∫ d

0
dx

∫ w

0
E(x, z, q) dz I =

∫ d

0
dx

∫ w

0
j (x, z, q) dz.

Shown in figure 3 is the dependence of the V –I characteristic on q at zero applied field. It can
be seen that there is no influence of the shielding current. Clearly, the V –I curve is shifted
gradually toward the right (larger current) with increasing q, which means that the smaller
d/w, the smaller the induced voltage V . To display in detail the dependence of the V –I curves
on the aspect factor, we show in figure 4 the distribution of j in the x–z plane for different q
with the same area and applied current I . The distribution of E has a similar shape and, for
simplicity, is not shown here. It is seen that the aspect ratio strongly affects the distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q increases

V
/V

0

I/I
c0

Figure 3. The effect of q on the V –I characteristics; q increases from 0.5 to 1, i.e. from a square
cross section to an infinite slab. The E–j curve corresponding to the completely homogeneous
case and described in equation (2) is also shown (dotted line) for comparison.
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Figure 4. The effect of q on the distribution of the current density j in cross sections of the same
area at zero field, I = 0.3Ic0, dI/dt = (Ic0/300) s−1 and n = 6. (a) q = 0.5. (b) q ≈ 1.

(This figure is in colour only in the electronic version)

of the current and thus that of the electric field. Figure 4 demonstrates that the larger q,
i.e. the thinner the sample, the more homogeneous the distributions of current. This result is
understandable since the longest distance of flux diffusion is d/2 (d < w), and the larger q,
the smaller d for the same cross section area (see figure 1)

Secondly, we simulate the temperature and field dependence of the V –I curves to compare
with experimental values measured at different applied fields and temperatures. This will check
our model in a specific case. For the Tl2212 bridge, the ratio d/w = 0.2/30 = 1/150 and
q  1. The numerical V –I curves obtained by solving equation (3) are also shown in figure 2
to allow a fair comparison. We are confident that our numerical solution is correct in describing
the rectangular diffusion of flux. The space and time evolution of j in the sample at a certain
field and temperature is illustrated in figure 5, from which it can be seen that the current density
j is indeed spatially homogeneous when the current is large enough, confirming equation (2a).
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Figure 5. Space and time evolution of the current density j calculated with d/w = 1/150, q ≈ 1,
dI/dt = (Ic0/200) s−1, T = 55 K and µ0H = 0.507 T. Arrows indicate the progress of the
current-density profiles as the applied current is increased from 0.1Ic0 to 0.9Ic0. The corresponding
V –I curve is shown in figure 2.

4. Summary

In summary, a simple numerical calculation procedure has been proposed which can solve
the non-linear electric field diffusion equation, based upon the collective creep model. We
have investigated the V –I curve of a sample with rectangular cross section at a certain sweep
rate of the applied current. Calculating the spatial and time evolution of the electric field
E and current density j underpinning the V –I curves, we show that the V –I curve shifts
towards larger currents with decreasing sample thickness. To verify the proposed numerical
procedure and the collective creep model on which the numerical observation was based, the
V –I curves at different temperatures and fields for a Tl2Ba2 CaCu2O8+x (Tl2212) sample with
rectangular cross section were measured and compared to the calculated curves. Comparison
of the numerical and experimental results proves the validity of our simulation.

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (NKBRSF-
G1999-0646) and NNSFC under contract No 19994016.

References

[1] Campbell A M and Evetts E J 1972 Adv. Phys. 21 199
[2] Iye Y, Tamegai T, Takeya H and Takei H 1987 Japan. J. Appl. Phys. 26 L1057
[3] Tinkham M 1988 Phys. Rev. Lett. 61 1658
[4] Palstra T T M, Batlogg B, Van Dover R B, Schneemeyer L F and Waszczak J V 1990 Phys. Rev. B 42 6621



6518 S Y Ding et al

[5] Worthington T K, Holtzberg F H and Feild C A 1990 Cryogenics 30 417
[6] Charalambous M, Chaussy J and Lejay P 1992 Phys. Rev. B 45 5091
[7] Safar H, Gammel P L, Huse D A, Bishop D J, Rice J P and Ginsberg D M 1992 Phys. Rev. Lett. 69 824
[8] Kwok W K, Fleshler S, Welp U, Vinokur V M, Downey J, Crabtree G W and Miller M M 1992 Phys. Rev. Lett.

693370
[9] Zeldov E, Amer N M, Koren G, Gupta A, McElfresh M W and Gambino R J 1990 Appl. Phys. Lett. 56 680

[10] Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A and Fisher M P A 1990 Phys. Rev. Lett. 64 2586
Gammel P L, Schneemeyer L F and Bishop D J 1991 Phys. Rev. Lett. 66 953

[11] Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[12] Ding S Y, Ren C, Yao X X, Sun Y and Zhang H 1998 Cryogenics 38 809
[13] Ma L P, Li H C, Wang R L and Li L 1997 Physica C 279 79
[14] Zeng Z Y, Yao X X, Qin M J, Ge Y, Ren C, Ding S Y, Ma L P, Li H C and Li L 1997 Physica C 291 229
[15] Zhang P, Ren C, Ding S Y, Ding Q, Lin F Y, Zhang Y H, Luo H and Yao X X 1999 Supercond. Sci. Technol. 12

571
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